Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement.
نویسندگان
چکیده
We demonstrate entangling quantum gates within a chain of five trapped ion qubits by optimally shaping optical fields that couple to multiple collective modes of motion. We individually address qubits with segmented optical pulses to construct multipartite entangled states in a programmable way. This approach enables high-fidelity gates that can be scaled to larger qubit registers for quantum computation and simulation.
منابع مشابه
Entanglement of trapped-ion clock states
A Mølmer-Sørensen entangling gate is realized for pairs of trapped Cd ions using magnetic-field insensitive “clock” states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, lim...
متن کاملModular entanglement of atomic qubits using photons and phonons
Quantumentanglement is thecentral resourcebehindquantum information science, from quantum computation and simulation1,2 to enhanced metrology3 and secure communication1. These applications require the quantum control of large networks of qubits to realize gains and speed increases over conventional devices. However, propagating entanglement becomes di cult or impossible as the system grows in s...
متن کاملQuantum computation with diatomic qubits in optical lattices
Recently, several quantum computation schemes utilizing ultracold dipolar molecules trapped in optical lattices were suggested [1]. The coupling due to dipole-dipole interactions between molecular bits is strong enough to induce entanglement and hence to realize a set of universal quantum logic gates. However, the electric dipole-dipole interaction between molecules can not be controllably swit...
متن کاملحفظ و مقایسه درهمتنیدگی، ناسازگاری و همدوسی کوانتومی بین کیوبیتهای متحرک در کاواکهای نشت کننده
In this study, we consider a composed system consisting of two identical non-interacting subsystems. Each sub-system is made of a moving qubit into a leaky cavity. The study of the dynamic of the composed system revealed that compared with the stationary qubits, entanglement, quantum discord and coherence between two moving qubits remained close to their initial values as time went by. In parti...
متن کاملMetasurface-Mediated Quantum Entanglement
Entanglement-based quantum science exploits subtle properties of quantum mechanics into applications such as quantum computing, sensing, and metrology. The emerging route for quantum computing applications, which calls for ultracompact, integrated, and scalable architecture, aims at onchip entangled qubits. In this context, quantum entanglement among atomic qubits was achieved via cold-controll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 112 19 شماره
صفحات -
تاریخ انتشار 2014